TCVN 9489:2012 Tiêu chuẩn quốc gia về bê tông - Xác định chiều dày của kết cấu dạng bản bằng phương pháp phản xạ xung va đập

TIÊU CHUẨN QUỐC GIA
TCVN 9489 : 2012
ASTM C1383 - 04
BÊ TÔNG - XÁC ĐỊNH CHIỀU DÀY CỦA KẾT CẤU DẠNG BẢN BẰNG PHƯƠNG PHÁP PHẢN XẠ XUNG VA ĐẬP
Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method
Lời nói đầu
TCVN 9489:2012 được xây dựng trên cơ sở hoàn toàn tương đương với ASTM C1383 - 04 Standard test method for measuring the P-wave speed and the thickness of concrete plates using the impact-echo method với sự cho phép của ASTM quốc tế, 100 Barr Harbor Drive, West Conshohocken, PA 19428, USA. Tiêu chuẩn ASTM C1383 - 04 thuộc bản quyền của ASTM quốc tế.
TCVN 9489:2012 do Hội Công nghiệp Bê tông Việt Nam biên soạn, Bộ Xây dựng đề nghị, Tổng cục Tiêu chuẩn Đo lường Chất lượng thẩm định, Bộ Khoa học và Công nghệ công bố.

BÊ TÔNG - XÁC ĐỊNH CHIỀU DÀY CỦA KẾT CẤU DẠNG BẢN BẰNG PHƯƠNG PHÁP PHẢN XẠ XUNG VA ĐẬP
Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method
1. Phạm vi áp dụng
1.1. Tiêu chuẩn này quy định quy trình xác định chiều dày của bản bê tông, mặt đường bê tông, bản mặt cầu, tường hoặc các kết cấu dạng bản khác bằng phương pháp phản xạ xung va đập.
1.2. Theo phương pháp này, có hai quy trình sau:
1.2.1. Quy trình A: Đo vận tốc sóng xung P
Quy trình này đo thời gian cần thiết để sóng xung P sinh ra bởi sự va đập điểm, trong thời gian ngắn, dịch chuyển giữa hai đầu thu đặt tại khoảng cách đã biết dọc theo bề mặt kết cấu. Tốc độ sóng xung P được tính bằng cách chia khoảng cách giữa hai đầu thu cho thời gian dịch chuyển.
1.2.2. Quy trình B: Thí nghiệm phản xạ xung va đập
Quy trình này đo tần số của sóng xung P sinh ra bởi sự va đập điểm, trong thời gian ngắn, được phản xạ giũa hai mặt đối diện song song với nhau của bản bê tông. Chiều dày bản được tính từ tần số đo này và tốc độ sóng P thu được theo quy trình A.
1.2.3. Trừ khi có quy định khác, cả hai quy trình A và B phải được thực hiện tại mỗi điểm cần đo chiều dày.
1.3. Các giá trị trong tiêu chuẩn này theo đơn vị của hệ SI.
1.4. Các đoạn văn chú thích của tiêu chuẩn này, chỉ cung cấp tài liệu giải thích. Những đoạn văn đó (trừ các bảng biểu và hình vẽ) không được coi là yêu cầu của tiêu chuẩn này.
1.5. Tiêu chuẩn này không đề cập đến tất cả các vấn đề liên quan đến an toàn khi sử dụng. Người sử dụng tiêu chuẩn này có trách nhiệm thiết lập các nguyên tắc về an toàn và bảo vệ sức khỏe cũng như khả năng áp dụng phù hợp với các giới hạn quy định trước khi đưa vào sử dụng.
2. Tài liệu viện dẫn
Các tài liệu viện dẫn sau đây là rất cần thiết khi áp dụng tiêu chuẩn này. Đối với các tài liệu viện dẫn ghi năm công bố thì áp dụng bản được nêu. Đối với các tài liệu viện dẫn không ghi năm công bố thì áp dụng phiên bản mới nhất, bao gồm cả các bản sửa đổi, bổ sung (nếu có).
ASTM C597, Test Method for Pulse Velocity Through Concrete (Phương pháp đo tốc độ xung qua bê tông).
ASTM E1316, Terminology for Nondestructive Examinations (Thuật ngữ đối với các thí nghiệm không phá hủy).
3. Thuật ngữ và định nghĩa
3.1.1. Trở kháng âm (Acoustic impedance)
Tích số của tốc độ sóng xung P và mật độ được sử dụng trong các tính toán về các đặc tính phản xạ sóng ứng suất tại các mặt giới hạn.
3.1.2. Phổ biên độ (Amplitute spectrum)
Đồ thị của biên độ tương đối ứng với tần số có được từ dạng sóng khi sử dụng kỹ thuật chuyển đổi Fourier.
3.1.3. Sự chuyển đổi Fouirer (Fourier transform)
Kỹ thuật số được sử dụng để chuyển các dạng sóng kỹ thuật số từ phạm vi thời gian sang phạm vi tần số.
3.1.3.1. Giải thích
Các cực trị trong biên độ phổ tương ứng với các tần số trội trong dạng sóng.
3.1.4. Phương pháp phản xạ va đập (Impact-echo methods)
Phương pháp thí nghiệm không phá hủy nhận tín hiệu đã gửi dựa trên việc sử dụng va đập cơ học trong thời gian ngắn để tạo sóng ứng suất nhanh và sự sử dụng bộ chuyển đổi thu tín hiệu băng rộng đặt cạnh điểm va đập.
3.1.4.1. Giải thích
Các dạng sóng được chuyển đổi thành tần số và phổ biên độ hình thành được phân tích để có các tần số trội trong sự phản hồi của kết cấu đối với va đập. Các tần số này được sử dụng để xác định chiều dày của kết cấu hay sự hiện diện của các khuyết tật.
3.1.5. Khoảng thời gian va đập (Impact duration)
Khoảng thời gian mà đầu va đập gây ra các sóng ứng suất khi tiếp xúc với bề mặt thí nghiệm. Nó cũng được coi như thời gian tiếp xúc.
3.1.5.1. Giải thích
Khoảng thời gian va đập là yếu tố then chốt quyết định sự thành công của hai quy trình thí nghiệm trong tiêu chuẩn này. Các khoản thời gian va đập sẽ được khuyến cáo trong tiêu chuẩn này. Trong thực tế, khoảng thời gian va đập phụ thuộc vào loại đầu va đập và điều kiện của bê tông tại vị trí va đập. Các bề mặt nhẵn, cứng sẽ cho khoảng thời gian va đập ngắn hơn so với các bề mặt nhám và mềm. Người sử dụng nên kiểm tra xem các khoảng thời gian va đập có nằm trong khoảng khuyến cáo hay không. Đo gần đúng khoảng thời gian va đập có thể có được từ một phần của dạng sóng tương ứng với sự tới của sóng bề mặt. Hình 1 nêu ví dụ về phần sóng bề mặt của dạng sóng và chỉ ra khoảng thời gian tiếp xúc gần đúng.
Hình 1 - Hình phóng to của phân sóng bề mặt của dạng sóng cho thấy chiều rộng của tín hiệu sóng bề mặt tương ứng với thời gian tiếp xúc của sự va đập
3.1.6. Sóng xung P (P-wave)
Sóng ứng suất giãn (dọc hay chính) gây nên sự dịch chuyển của hạt song song với hướng lan truyền sóng. Sóng này tạo các ứng suất bình thường (kéo hay nén) khi lan truyền.
3.1.7. Vận tốc sóng xung P (P-wave speed)
Vận tốc sóng xung P lan truyền qua môi trường rắn bán vô hạn.
3.1.7.1. Giải thích
Vận tốc sóng xung P chính là tốc độ sóng xung nén đo được theo ASTM C597.
3.1.8. Tần suất lấy mẫu (Sampling frequency)
Mức mà tại đó các điểm có dạng sóng được ghi nhận; nghịch đảo của khoảng lấy mẫu được thể hiện bằng Hz hay số mẫu/giây (cũng được gọi là mức lấy mẫu).
3.1.9. Chu kỳ lấy mẫu (Sampling period)
Thời gian của dạng sóng bằng số điểm trong dạng sóng nhân với khoảng lấy mẫu.
3.1.10. Khoảng lấy mẫu (Sampling interval)
Sự chênh lệch thời gian giữa hai điểm sát nhau bất kỳ trong dạng sóng.
3.1.11. Sóng bề mặt (Surface wave)
Sóng ứng suất mà trong đó sự dịch chuyển của hạt dạng elip và biên độ của sự chuyển động của hạt giảm nhanh theo chiều sâu. Nó cũng được biết dưới tên sóng Rayleidh hay sóng R (Rayleidh wave - R-wave).
3.1.12. Dạng sóng (waveform)
Tín hiệu nhận được từ một đầu thu biểu thị bằng đồ thị của điện thế theo thời gian.
3.1.13. Tham khảo Thuật ngữ trong ASTM E1316 đối với các thuật ngữ bổ sung khác, có liên quan đến khi nghiệm siêu âm không phá hủy, để có thể áp dụng cho phương pháp thử này.
3.2. Các định nghĩa riêng của tiêu chuẩn này
3.2.1. Vận tốc sóng xung P biểu kiến trong bản (Apparent P-wave speed in a plate)
Thông số bằng 0,96 của vận tốc sóng xung P:
Cp,plate = 0,96Cp                                                 (1)
trong đó:
Cp,plate vận tốc sóng xung P biểu kiến trong bản, m/s;
Cvận tốc sóng xung P trong bê tông xác định theo quy trình A, m/s.
3.2.1.1. Giải thích
Thông số này được sử dụng để tính chiều dày trong các phép đo phản xạ va đập ở các bản bê tông. Vận tốc sóng xung P trong vật liệu bê tông được chuyển thành vận tốc sóng xung P biểu kiến trong bản và được sử dụng để tính chiều dày bản theo công thức sau:
                                                     (2)
trong đó:
T là chiều dày bản, m;
f là tần số của kiểu chiều dày sóng xung P của bản có được từ phổ biên độ, Hz.
3.2.2. Bản (Plate)
Mọi kết cấu khối hộp có kích thước cạnh ít nhất sáu lần chiều dày.
3.2.2.1. Giải thích
Các kích thước cạnh tối thiểu là cần thiết để giúp cho các loại tấm bản dao động, tránh khỏi sự phiền phức khi nhận diện các tần suất kiểu độ dày trong phổ biên độ. Các kích thước cạnh tối thiểu và chu kỳ lấy mẫu hợp lý có tính tương quan, và được giải thích trong Chú thích 11.
4. Ý nghĩa và sử dụng
4.1. Phương pháp thử này có thể sử dụng để thay thế hay kết hợp với phương pháp khoan lấy mẫu để xác định độ dày các loại sàn, bản, bê tông mặt đường, bản mặt cầu, tường hay kết cấu dạng bản khác. Có mức độ nào đó về sai số hệ thống trong độ dày tính được do bản chất gián đoạn của các tín hiệu số khi sử dụng kỹ thuật số. Lỗi sai số hệ thống tuyệt đối phụ thuộc vào chiều dày tấm bản, khoảng cách lấy mẫu và chu kỳ lấy mẫu.
4.2. Do vận tốc sóng có thể thay đổi từ điểm này đến điểm khác trong kết cấu do sự khác biệt về tuổi bê tông hay sự không ổn định của các mẻ bê tông khác nhau, nên vận tốc sóng cần được đo (Quy trình A) tại mỗi điểm mà tại đó cần xác định chiều dày (Quy trình B).
4.3. Đo các chiều dày lớn nhất và nhỏ nhất có thể bị hạn chế bởi các chi tiết của thiết bị đo (các đặc tính phản hồi của bộ chuyển đổi tín hiệu thu và đầu va chuyên dụng). Các giới hạn sẽ được nhà sản xuất thiết bị quy định và không được sử dụng các thiết bị này vượt các giá trị cho phép. Nếu thiết bị thí nghiệm được người sử dụng tự lắp đặt thì các hạn chế độ dày sẽ được thiết lập và quy định thành văn bản.
4.4. Phương pháp này không áp dụng cho các kết cấu có các lớp phủ trên như bản cầu có lớp phủ bê tông atphan hay bê tông xi măng poóc lăng. Phương pháp này dựa trên sự giả định rằng tấm bản có cùng vận tốc sóng xung P theo chiều sâu.
4.5. Quy trình A được thực hiện trên bê tông nên không khí khô cũng như hàm lượng ẩm bề mặt cao có thể ảnh hưởng đến kết quả đo.
4.6. Quy trình B có thể áp dụng cho bản bê tông đặt trên nền đất, sỏi, bê tông atphan thấm nước hay bê tông xi măng poóc lăng gầy, do vậy có sự khác biệt về trở kháng âm giữa bản bê tông và lớp nền hoặc sẽ có nhiều lỗ rỗng khí ở mặt tiếp xúc giữa bản bê tông và nền làm xuất hiện các phản xạ đo được. Nếu các điều kiện này không được đáp ứng, thì dạng sóng sẽ có biên độ thấp và phổ biên độ sẽ không có cực trị trội ở tần số tương ứng với độ dày (phương trình 2). Nếu mặt tiếp xúc giữa bê tông và nền là nhám thì phổ biên độ sẽ có cực trị tù thay cho nhọn của bề mặt tiếp xúc nhẵn.
4.7. Các quy trình mô tả nêu trên không bị ảnh hưởng bởi tiếng ồn giao thông hay sự rung tần số thấp của kết cấu gây ra bởi sự di chuyển bình thường của các phương tiện giao thông trên kết cấu.
4.8. Các quy trình trên không áp dụng trong trường hợp có ồn (nhiễu) cơ học gây ra bởi thiết bị va đập (máy búa đóng cọc…) trên kết cấu.
4.9. Quy trình A không áp dụng trong trường hợp nhiễu điện biên độ lớn được gây ra bởi chẳng hạn như máy phát điện hay các nguồn khác có ảnh hưởng đến hệ thống thu nhận dữ liệu.
QUY TRÌNH A - ĐO VẬN TỐC SÓNG XUNG P
5. Tóm tắt phương pháp
5.1. Sử dụng sự va đập lên bề mặt bê tông để tạo các sóng ứng suất nhanh. Các sóng này lan truyền dọc theo bề mặt bê tông và qua hai đầu thu tín hiệu đặt trên cùng đường thẳng với điểm va đập và tại các khoảng cách cách nhau đã biết.
5.2. Sự chênh lệch về thời gian của tín hiệu sóng xung P (sóng ứng suất với vận tốc lớn nhất) khi đến tại mỗi đầu thu được sử dụng để xác định vận tốc sóng xung P bằng cách lấy khoảng cách đã biết giữa hai đầu thu tín hiệu chia cho thời gian truyền tín hiệu.
6. Thiết bị, dụng cụ
6.1. Đầu va đập
Đầu va đập phải có dạng cầu hay chỏm cầu. Nó sẽ tạo ra khoảng thời gian va đập (30 ± 10) ms với năng lượng đủ để tạo ra sự dịch chuyển bề mặt do sóng xung P mà có thể ghi nhận bởi hai đầu thu (xem Chú thích 1). Đầu va sẽ được định vị để tạo sự va lên điểm trên đường thẳng đi qua hai đầu thu ở khoảng cách (150 ± 10) mm từ đầu thu thứ nhất.
CHÚ THÍCH 1: Các bi thép cứng có đường kính (5 ÷ 8) mm được gắn trên các thanh lò xo thép để có thể tạo các va đập thích hợp.
6.2. Các đầu thu tín hiệu
Hai đầu thu băng rộng đáp ứng sự dịch chuyển vuông góc với bề mặt. Các đầu thu này cần phải có khả năng đo được các dịch chuyển nhỏ tương ứng với sự tới của sóng xung P gây ra bởi sự va đập dịch chuyển dọc theo bề mặt. Diện tích tiếp xúc nhỏ giữa pin điện áp và bề mặt bê tông là cần thiết để ghi nhận chính xác sự tới của sóng xung P (xem Chú thích 2). Sử dụng vật liệu thích hợp để kết nối đầu thu với bê tông.
CHÚ THÍCH 2: Đầu thu sự dịch chuyển thông dụng được làm từ pin điện áp hình côn có đường kính đầu (tiếp xúc) đo là 1,5 mm và đầu cuối rộng có gắn khối đồng thích hợp. Tấm chì dày khoảng 0,25 mm là vật liệu kết nối thích hợp cho loại đầu thu như thế.
6.2.1. Các đầu thu thích hợp nên được công bố bằng văn bản trước về khả năng đo chính xác đối với các chiều dày bản theo phương pháp này.
6.3. Thiết bị định vị
Bộ định vị (gá) cần bảo đảm giữ được các đầu thu ở khoảng cách nhau cố định. Bộ định vị này không được cản trở khả năng của đầu thu đo dịch chuyển của bề mặt. Nó được chế tạo để giảm thiểu khả năng truyền sóng xung P qua nó nhằm ngăn ngừa ảnh hưởng đến việc đo thời gian dịch chuyển của sóng xung P. Các đầu thu sẽ được đặt cách nhau khoảng 300 mm. Đo và ghi nhận khoảng cách thực giữa các tâm của các đầu thu với độ chính xác tới 1 mm.
CHÚ THÍCH 3: Sự chính xác của phép đo bị ảnh hưởng nếu khoảng cách giữa các mũi của hai đầu thu không được biết chính xác. Bộ định vị nên được thiết kế và chế tạo bằng các vật liệu phù hợp nhất để giảm thiểu sự mất ổn định của khoảng cách giữa các đầu thu do sự thay đổi nhiệt độ.
6.4. Hệ thống thu nhận dữ liệu
Bao gồm phần cứng và phần mềm để thu nhận, ghi và xử lý dữ liệu đầu ra của hai đầu thu. Hệ thống này có thể là một máy tính xách tay có thẻ ghi dữ liệu ở hai kênh hoặc có thể là một máy xách tay phân tích dạng sóng ở hai kênh.
6.4.1. Tấn suất lấy mẫu của mỗi kênh sẽ là 500 kHz hoặc cao hơn (khoảng thời gian lấy mẫu là 2 ms hoặc ít hơn). Hệ thống sẽ có khả năng khởi động từ tín hiệu của một trong các kênh ghi.
6.4.2. Dải điện áp và sự chuyển điện áp của hệ thống thu nhận dữ liệu sẽ trùng hợp với độ nhạy của các đầu thu sao cho sự tới của sóng xung P được xác định chính xác.
CHÚ THÍCH 4: Ví dụ, thẻ thu nhận dữ liệu của máy tính với dải điện áp ± 2,5 V và sự chuyển động 12 bit là thích hợp đối với đầu thu tín hiệu mô tả trong chú thích 2.
6.4.3. Hệ thống hiển thị sẽ bao gồm các con trỏ (trên màn hình), bao gồm cả số liệu về thời gian và điện áp của các điểm ở mỗi dạng sóng tương ứng với sự tới của sóng xung P.
6.4.4. Hệ thống thu nhận dữ liệu sẽ hoạt động bởi nguồn điện mà không tạo ra các nhiễu điện do được bởi các đầu thu và hệ thống thu nhận dữ liệu trong trường hợp hệ thống được đặt ở độ nhạy điện áp yêu cầu để đo các sự tới của sóng xung P.
CHÚ THÍCH 5: Các hệ thống thu nhận dữ liệu dùng nguồn pin là thích hợp.
6.5. Cáp và đầu nối
Để nối các đầu thu tín hiệu với hệ thống thu nhận dữ liệu. Các đầu nối cần có chất lượng cao và nối chặt với cáp. Cáp phải được bọc để giảm nhiễu điện.
6.6. Thiết bị kiểm tra chức năng
Thiết bị dùng để kiểm tra tất cả các bộ phận của hệ thống thí nghiệm hoạt động ổn định trước khi bắt đầu tiến hành thí nghiệm.
CHÚ THÍCH 6: Có thể bao gồm cả một mẫu thử tham khảo mà sự phản ứng va đập của các mẫu này được xác định trước và có thể được so sánh với số liệu đầu ra của hệ thống thí nghiệm.
7. Chuẩn bị bề mặt thí nghiệm
7.1. Bề mặt thí nghiệm cần phải khô. Bụi và các mảnh vỡ nhỏ cần được loại bỏ khỏi bề mặt nơi mà vận tốc sóng xung P được xác định.
7.2. Nếu bề mặt thí nghiệm quá nhám thì khó đạt được tiếp xúc tốt giữa đầu thu tín hiệu và bê tông, bề mặt bê tông nên được mài nhẵn để có tiếp xúc tốt. Loại bỏ bụi bẩn trước khi kết nối đầu thu với bề mặt bê tông.
CHÚ THÍCH 7: Độ nhám của bề mặt có thể gây ra các vấn đề khi trục trặc khi thí nghiệm mặt đường cao tốc có kết cấu nhám hay các bề mặt có khe, rãnh. Tại các kết cấu mới, các thành phần dưỡng hộ bê tông cần loại bỏ tại vị trí thí nghiệm để các đầu thu tiếp xúc tốt với bề mặt thí nghiệm và đạt được va đập nhanh.
8. Cách tiến hành
Bản word | Bản gốc

TCVN 9489:2012, TCVN 9489:2012 Tiêu chuẩn quốc gia về bê tông - Xác định chiều dày của kết cấu dạng bản bằng phương pháp phản xạ xung va đập, tcvn miễn phí, tiêu chuẩn việt nam

Nhãn:

Đăng nhận xét

[blogger]

Author Name

Biểu mẫu liên hệ

Tên

Email *

Thông báo *

Được tạo bởi Blogger.